3.3.36 \(\int \frac {1}{x^7 (8 c-d x^3) \sqrt {c+d x^3}} \, dx\)

Optimal. Leaf size=107 \[ \frac {d^2 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{2304 c^{7/2}}-\frac {7 d^2 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{256 c^{7/2}}+\frac {5 d \sqrt {c+d x^3}}{192 c^3 x^3}-\frac {\sqrt {c+d x^3}}{48 c^2 x^6} \]

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {446, 103, 151, 156, 63, 208, 206} \begin {gather*} \frac {d^2 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{2304 c^{7/2}}-\frac {7 d^2 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{256 c^{7/2}}+\frac {5 d \sqrt {c+d x^3}}{192 c^3 x^3}-\frac {\sqrt {c+d x^3}}{48 c^2 x^6} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^7*(8*c - d*x^3)*Sqrt[c + d*x^3]),x]

[Out]

-Sqrt[c + d*x^3]/(48*c^2*x^6) + (5*d*Sqrt[c + d*x^3])/(192*c^3*x^3) + (d^2*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])
])/(2304*c^(7/2)) - (7*d^2*ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]])/(256*c^(7/2))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x^7 \left (8 c-d x^3\right ) \sqrt {c+d x^3}} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{x^3 (8 c-d x) \sqrt {c+d x}} \, dx,x,x^3\right )\\ &=-\frac {\sqrt {c+d x^3}}{48 c^2 x^6}-\frac {\operatorname {Subst}\left (\int \frac {10 c d-\frac {3 d^2 x}{2}}{x^2 (8 c-d x) \sqrt {c+d x}} \, dx,x,x^3\right )}{48 c^2}\\ &=-\frac {\sqrt {c+d x^3}}{48 c^2 x^6}+\frac {5 d \sqrt {c+d x^3}}{192 c^3 x^3}+\frac {\operatorname {Subst}\left (\int \frac {42 c^2 d^2-5 c d^3 x}{x (8 c-d x) \sqrt {c+d x}} \, dx,x,x^3\right )}{384 c^4}\\ &=-\frac {\sqrt {c+d x^3}}{48 c^2 x^6}+\frac {5 d \sqrt {c+d x^3}}{192 c^3 x^3}+\frac {\left (7 d^2\right ) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {c+d x}} \, dx,x,x^3\right )}{512 c^3}+\frac {d^3 \operatorname {Subst}\left (\int \frac {1}{(8 c-d x) \sqrt {c+d x}} \, dx,x,x^3\right )}{1536 c^3}\\ &=-\frac {\sqrt {c+d x^3}}{48 c^2 x^6}+\frac {5 d \sqrt {c+d x^3}}{192 c^3 x^3}+\frac {(7 d) \operatorname {Subst}\left (\int \frac {1}{-\frac {c}{d}+\frac {x^2}{d}} \, dx,x,\sqrt {c+d x^3}\right )}{256 c^3}+\frac {d^2 \operatorname {Subst}\left (\int \frac {1}{9 c-x^2} \, dx,x,\sqrt {c+d x^3}\right )}{768 c^3}\\ &=-\frac {\sqrt {c+d x^3}}{48 c^2 x^6}+\frac {5 d \sqrt {c+d x^3}}{192 c^3 x^3}+\frac {d^2 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{2304 c^{7/2}}-\frac {7 d^2 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{256 c^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 95, normalized size = 0.89 \begin {gather*} \frac {d^2 x^6 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )-63 d^2 x^6 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )+12 \sqrt {c} \sqrt {c+d x^3} \left (5 d x^3-4 c\right )}{2304 c^{7/2} x^6} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^7*(8*c - d*x^3)*Sqrt[c + d*x^3]),x]

[Out]

(12*Sqrt[c]*Sqrt[c + d*x^3]*(-4*c + 5*d*x^3) + d^2*x^6*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])] - 63*d^2*x^6*ArcTa
nh[Sqrt[c + d*x^3]/Sqrt[c]])/(2304*c^(7/2)*x^6)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.14, size = 95, normalized size = 0.89 \begin {gather*} \frac {d^2 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{2304 c^{7/2}}-\frac {7 d^2 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{256 c^{7/2}}+\frac {\sqrt {c+d x^3} \left (5 d x^3-4 c\right )}{192 c^3 x^6} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(x^7*(8*c - d*x^3)*Sqrt[c + d*x^3]),x]

[Out]

(Sqrt[c + d*x^3]*(-4*c + 5*d*x^3))/(192*c^3*x^6) + (d^2*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(2304*c^(7/2)) -
 (7*d^2*ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]])/(256*c^(7/2))

________________________________________________________________________________________

fricas [A]  time = 0.81, size = 217, normalized size = 2.03 \begin {gather*} \left [\frac {\sqrt {c} d^{2} x^{6} \log \left (\frac {d x^{3} + 6 \, \sqrt {d x^{3} + c} \sqrt {c} + 10 \, c}{d x^{3} - 8 \, c}\right ) + 63 \, \sqrt {c} d^{2} x^{6} \log \left (\frac {d x^{3} - 2 \, \sqrt {d x^{3} + c} \sqrt {c} + 2 \, c}{x^{3}}\right ) + 24 \, {\left (5 \, c d x^{3} - 4 \, c^{2}\right )} \sqrt {d x^{3} + c}}{4608 \, c^{4} x^{6}}, \frac {63 \, \sqrt {-c} d^{2} x^{6} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-c}}{c}\right ) - \sqrt {-c} d^{2} x^{6} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-c}}{3 \, c}\right ) + 12 \, {\left (5 \, c d x^{3} - 4 \, c^{2}\right )} \sqrt {d x^{3} + c}}{2304 \, c^{4} x^{6}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^7/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4608*(sqrt(c)*d^2*x^6*log((d*x^3 + 6*sqrt(d*x^3 + c)*sqrt(c) + 10*c)/(d*x^3 - 8*c)) + 63*sqrt(c)*d^2*x^6*lo
g((d*x^3 - 2*sqrt(d*x^3 + c)*sqrt(c) + 2*c)/x^3) + 24*(5*c*d*x^3 - 4*c^2)*sqrt(d*x^3 + c))/(c^4*x^6), 1/2304*(
63*sqrt(-c)*d^2*x^6*arctan(sqrt(d*x^3 + c)*sqrt(-c)/c) - sqrt(-c)*d^2*x^6*arctan(1/3*sqrt(d*x^3 + c)*sqrt(-c)/
c) + 12*(5*c*d*x^3 - 4*c^2)*sqrt(d*x^3 + c))/(c^4*x^6)]

________________________________________________________________________________________

giac [A]  time = 0.18, size = 101, normalized size = 0.94 \begin {gather*} \frac {7 \, d^{2} \arctan \left (\frac {\sqrt {d x^{3} + c}}{\sqrt {-c}}\right )}{256 \, \sqrt {-c} c^{3}} - \frac {d^{2} \arctan \left (\frac {\sqrt {d x^{3} + c}}{3 \, \sqrt {-c}}\right )}{2304 \, \sqrt {-c} c^{3}} + \frac {5 \, {\left (d x^{3} + c\right )}^{\frac {3}{2}} d^{2} - 9 \, \sqrt {d x^{3} + c} c d^{2}}{192 \, c^{3} d^{2} x^{6}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^7/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

7/256*d^2*arctan(sqrt(d*x^3 + c)/sqrt(-c))/(sqrt(-c)*c^3) - 1/2304*d^2*arctan(1/3*sqrt(d*x^3 + c)/sqrt(-c))/(s
qrt(-c)*c^3) + 1/192*(5*(d*x^3 + c)^(3/2)*d^2 - 9*sqrt(d*x^3 + c)*c*d^2)/(c^3*d^2*x^6)

________________________________________________________________________________________

maple [C]  time = 0.21, size = 540, normalized size = 5.05 \begin {gather*} -\frac {d^{2} \arctanh \left (\frac {\sqrt {d \,x^{3}+c}}{\sqrt {c}}\right )}{768 c^{\frac {7}{2}}}+\frac {-\frac {d^{2} \arctanh \left (\frac {\sqrt {d \,x^{3}+c}}{\sqrt {c}}\right )}{4 c^{\frac {5}{2}}}+\frac {\sqrt {d \,x^{3}+c}\, d}{4 c^{2} x^{3}}-\frac {\sqrt {d \,x^{3}+c}}{6 c \,x^{6}}}{8 c}+\frac {\left (\frac {d \arctanh \left (\frac {\sqrt {d \,x^{3}+c}}{\sqrt {c}}\right )}{3 c^{\frac {3}{2}}}-\frac {\sqrt {d \,x^{3}+c}}{3 c \,x^{3}}\right ) d}{64 c^{2}}-\frac {i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {\left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (2 \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )^{2} d^{2}+i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right ) d -\left (-c \,d^{2}\right )^{\frac {1}{3}} \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right ) d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}-\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, -\frac {2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )^{2} d +i \sqrt {3}\, c d -3 c d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )-3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )}{18 c d}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{\left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) d}}\right )}{13824 c^{4} \sqrt {d \,x^{3}+c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^7/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x)

[Out]

1/64/c^2*d*(-1/3*(d*x^3+c)^(1/2)/c/x^3+1/3*d*arctanh((d*x^3+c)^(1/2)/c^(1/2))/c^(3/2))+1/8/c*(-1/6*(d*x^3+c)^(
1/2)/c/x^6+1/4*d*(d*x^3+c)^(1/2)/c^2/x^3-1/4*d^2*arctanh((d*x^3+c)^(1/2)/c^(1/2))/c^(5/2))-1/13824*I/c^4*2^(1/
2)*sum((-c*d^2)^(1/3)*(1/2*I*(2*x+(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-
c*d^2)^(1/3)/d)/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3))*d)^(1/2)*(-1/2*I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/3)+(
-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)/(d*x^3+c)^(1/2)*(2*_alpha^2*d^2+I*(-c*d^2)^(1/3)*3^(1/2)*_alpha*d-(-
c*d^2)^(1/3)*_alpha*d-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/3)
/d-1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2),-1/18*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*
d+I*3^(1/2)*c*d-3*c*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha-3*(-c*d^2)^(2/3)*_alpha)/c/d,(I*3^(1/2)*(-c*d^2)^(1/3)/(
-3/2*(-c*d^2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)/d)^(1/2)),_alpha=RootOf(_Z^3*d-8*c))-1/768*d^2*arctanh((
d*x^3+c)^(1/2)/c^(1/2))/c^(7/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\int \frac {1}{\sqrt {d x^{3} + c} {\left (d x^{3} - 8 \, c\right )} x^{7}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^7/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

-integrate(1/(sqrt(d*x^3 + c)*(d*x^3 - 8*c)*x^7), x)

________________________________________________________________________________________

mupad [B]  time = 3.50, size = 94, normalized size = 0.88 \begin {gather*} \frac {d^2\,\mathrm {atanh}\left (\frac {c^3\,\sqrt {d\,x^3+c}}{3\,\sqrt {c^7}}\right )}{2304\,\sqrt {c^7}}-\frac {7\,d^2\,\mathrm {atanh}\left (\frac {c^3\,\sqrt {d\,x^3+c}}{\sqrt {c^7}}\right )}{256\,\sqrt {c^7}}-\frac {3\,\sqrt {d\,x^3+c}}{64\,c^2\,x^6}+\frac {5\,{\left (d\,x^3+c\right )}^{3/2}}{192\,c^3\,x^6} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^7*(c + d*x^3)^(1/2)*(8*c - d*x^3)),x)

[Out]

(d^2*atanh((c^3*(c + d*x^3)^(1/2))/(3*(c^7)^(1/2))))/(2304*(c^7)^(1/2)) - (7*d^2*atanh((c^3*(c + d*x^3)^(1/2))
/(c^7)^(1/2)))/(256*(c^7)^(1/2)) - (3*(c + d*x^3)^(1/2))/(64*c^2*x^6) + (5*(c + d*x^3)^(3/2))/(192*c^3*x^6)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {1}{- 8 c x^{7} \sqrt {c + d x^{3}} + d x^{10} \sqrt {c + d x^{3}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**7/(-d*x**3+8*c)/(d*x**3+c)**(1/2),x)

[Out]

-Integral(1/(-8*c*x**7*sqrt(c + d*x**3) + d*x**10*sqrt(c + d*x**3)), x)

________________________________________________________________________________________